
Intermolecular Radical Cation Diels-Alder (RCDA) Reaction of Bicyclooctadienes: Biomimetic Formal Total Synthesis of Kingianin A and Total Syntheses of Kingianins D, F, H, and J

Hee Nam Lim and Kathlyn A. Parker*

Department of Chemistry, Stony Brook University, Stony Brook, New York 11794, United States

Supporting Information

ABSTRACT: Three endo bicyclooctadienol dimers corresponding to kingianins A and H, D, and F and J were obtained by the intermolecular radical cation Diels-Alder (RCDA) reaction. Each isomer was cleanly isolated without the aid of preparative HPLC. Kingianins D, F, H, and J were prepared by way of these intermediates from commercially available materials in 10, 13, 9, and 17 steps, respectively. Kingianin A has already been prepared from one of these compounds. Completion of the synthesis of kingianin H relied on Manchand's one-step, three-carbon homologation.

■ INTRODUCTION

The kingianins (e.g., kingianins 1A, 1D, 1F, 1H, and 1J, Figure 1) are newly discovered racemic natural products from Endiandra kingiana Gamble; they are reported to be inhibitors of the antiapoptotic protein Bcl-xL. Like the endiandric acids which are isolated from another Endiandra species,2 the kingianins are thought to be the products of nonenzymatic cascades that proceed through bicyclooctadienes.1

While the last step in the biosynthesis of the endiandric acids is believed to be an intramolecular Diels-Alder reaction, that in the biosynthesis of the kingianins appears to be an intermolecular Diels-Alder dimerization. For example, kingianin A is the dimer of two enantiomerically identical molecules of prekingianin A (2), and kingianin D is the dimer of two enantiomeric molecules of prekingianin A (2) as suggested in Figure 1. On the other hand, kingianin F is the dimer of two enantiomerically identical molecules of the exo isomer of prekinginan A (3). Kingianin H corresponds to kingianin A in stereochemistry and kingianin J corresponds to kingianin F in stereochemistry.

A biomimetic approach to the kingianins is appealing but it has not been without its disappointments. Attempts by Moses et al. to prepare kingianin A by a thermal Diels-Alder dimerization of the presumed biogenetic precursor 2 were frustrated by the stability of the monomeric bicyclooctadiene structure with respect to the desired conversion.³ We recognized that radical cation catalysis overcomes the reticence of cyclohexadienes to undergo the Diels-Alder dimerization reaction.4 Furthermore, we postulated that the biosynthesis of the kingianins proceeds through a radical cation-mediated reaction, perhaps initiated by a photochemical event. Pursuing this idea, we examined the bicyclooctadiene dimerization under radical cation initiating conditions. Our substrate was designed to control regiochemistry and stereochemistry in the cycloaddition of two bicyclooctadienes by linking them with a tether. This approach, applied to a mixture of the dimeric meso and racemic precursors, yielded two pentacyclic isomers. One, derived from the C-2 symmetric linked dimer (the endo Diels-Alder product), was converted to kingianin A by way of diol 6. The structure of the second Diels-Alder product (exo product, from the meso linked dimer) did not correspond to that of any of the naturally occurring kingianins.

The intramolecular experiment established the radical cation Diels-Alder (RCDA) strategy as an entry to the kingianins and it provided an element of regiocontrol to this key reaction. However, the intermolecular RCDA has the potential to provide a stereodivergent synthesis, affording up to four pentacyclic scaffolds, three of which correspond to naturally occurring kingianins (A and its homologue H, D, and F and its homologue J).

As we have noted previously, a regio- and stereodivergent scheme can be considered practical only if the components of the final products or the components of an intermediate are readily separable.⁵ Despite the description of sequential silica gel and HPLC chromatographies required for the separation of the natural products, ^{1a} we were encouraged to pursue the divergent intermolecular approach by the observation that diol **6** and its exo stereoisomer 7 (Figure 2) had slightly different R_f values on TLC. We postulated that regio- and stereoisomeric

Received: October 7, 2013 Published: December 27, 2013

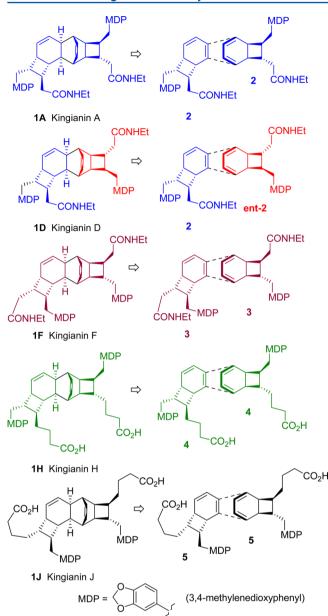


Figure 1. Kingianins A, D, F, H, and J and their corresponding monomers.

diols in the kingianin series might have usefully different chromatographic behaviors.

■ RESULTS AND DISCUSSION

Indeed, when endo cyclooctadienol 8 was subjected to RCDA conditions (5 mol % of the aminium salt catalyst for 1 h), a mixture of four separable compounds was obtained (Scheme

Figure 2. Endo diol **6** and exo diol **7**, obtained from a tether-mediated RCDA reaction of the bicyclooctadiene **8**.

1). Known endo diol 6^5 (37%), known exo diol 7^5 (10%), a new endo dimeric diol 9 (18%, corresponding in structure to

Scheme 1. Intermolecular RCDA Dimerization of Racemic Endo Bicyclooctadiene 8

kingianin D), and alcohol 10 (7%, a non-Diels—Alder product) were easily separated by preparative TLC. Isolation of diol 6 comprises a formal total synthesis of kingianin A.

Diol 9 was converted to kingianin D in 32% yield (Scheme 2) by the four-step sequence employed previously in the synthesis of kingianin A.⁵

Scheme 2. Synthesis of Kingianin D

Having completed the syntheses of kingianins A and D from endo monomer 8, we undertook the synthesis of kingianin F from the exo monomer 15. This compound was prepared from the known ether 14⁵ by reductive elimination initiated by methyllithium (Scheme 3). However, it proved to be an unsatisfactory substrate in the RCDA reaction. When exo

Scheme 3. Preparation of Exo Substrate 15 and Its Radical Cation Reaction

monomer 15 was subjected to the RCDA conditions, chloroether 16 was the only product isolated.

Therefore, the RCDA reaction was applied to acetate 17 (from alcohol 15, Scheme 4). This reaction gave a mixture of

Scheme 4. Preparation of Exo Substrate 17 and Its RCDA Reaction

two major products, 18 and 20, both derived from endo transition states, and a minor product 22, derived from an exo transition state. These diacetates appeared to be inseparable; however, removal of the acetyl groups gave a mixture of three diols, 19, 21, and 23, that were readily separated by preparative TLC.

Kingianin F was then prepared from diol 19 (Scheme 5) by the four-step homologation sequence used above (Scheme 2).

Scheme 5. Synthesis of Kingianin F

MsCl NEt₃, CH₂Cl₂,
$$\frac{H}{H}$$
 H₂O₂ (35%) EtOH-THF, reflux, 6 h MDP MDP NaCN, NaI, $\frac{24}{16}$ Y = OMs DMF, 70 °C, $\frac{25}{16}$ Y = CN (74% for two steps)

CH₃CHO, $\frac{H}{H}$ MDP MDP MDP $\frac{H}{H}$ MDP \frac

The structure of the second endo dimer, diol 21, was established by X-ray crystallography (Figure 3, see the Supporting Information for the crystallographic data for diol 21).

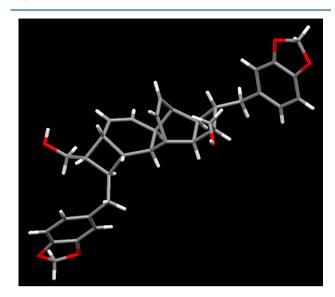
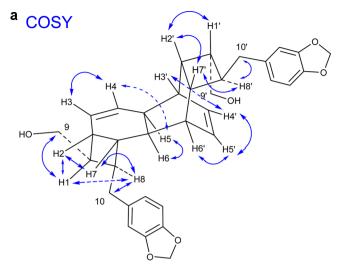


Figure 3. X-ray crystal structure of diol 21.


In addition, the structure of exo diol 23 was firmly identified as the mixed exo RCDA product by a combination of COSY, NOESY, HMQC, and HMBC NMR experiments (see Tables 9–13 in the Supporting Information). The key correlations in the COSY and NOESY are depicted in Figure 4.

On the basis of the chemical shifts of the two more upfield olefinic signals (5.81 and 5.63, in the same range as H3 and H4 in the kingianins), we assigned the dienophilic western substructure of the pentacyclic core as being identical to that in diols 19 and 21. This assumption was well supported by the crosspeaks of H3 (5.81) and H9 (3.28 and 3.46) in the NOESY. Also, the crosspeaks of H3/H2, H2/H1, H1/H10, H10/H7, H10/H8, H8/H6, and H6/H5 in the NOESY and the crosspeaks of H3/H4, H4/H5, H5/H6, H2/H1, H2/H7, H1/H8, H1/H9, H7/H8, and H8/H10 in the COSY confirmed that the connectivity and relative stereochemistry of the fused [4.2.0] bicyclooctene ring system in the western sector were the same as those in diols 19 and 21.

With the H9 and H2 protons identified, we could assign the 2H signal at 3.32/3.50 ppm to the H9' protons and 1H signal at 2.60 ppm to the H2' proton. The crosspeaks of H9'/H1', H1'/H2', H2'/H7', H7'/H10', H10'/H8', H3'/H4', H5'/H6', H5'/H8' and H8'/H9' in the NOESY and the crosspeaks of H1'/H2', H2'/H7', H7'/H8', H8'/H10', H4'/H5', H4'/H3', and H5'/H6' in the COSY confirmed the connectivity and relative stereochemistry of the fused [4.2.0]-bicyclooctene ring system in the eastern sector.

Next we needed to determine the stereochemistry of the connection of the eastern and western substructures. The key crosspeaks of H4/H2' in the NOESY showed that the stereochemical relationship of the eastern and western sectors corresponds to that of an exo Diels—Alder product (COSY and NOE pictures).

The exo Diels—Alder structure was further supported by HMQC and HMBC assignments. Each carbon in the core pentacyclic structure was assigned to the attached protons by the crosspeaks in the HMQC. Indeed, the examination of the

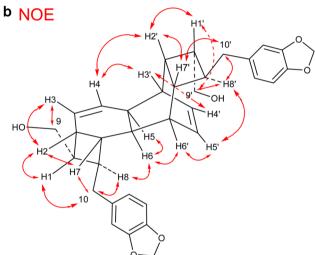


Figure 4. (a) COSY correlations in diol 23. (b) NOE correlations in diol 23.

connectivity by HMBC analysis (the crosspeaks of selected carbon atoms and the corresponding protons) are consistent with the suggested structure in the COSY and NOE pictures.

Of the pseudosymmetric kingianins (i.e., those that are constructed from two identical or enantiomeric monomers, A–F, H, and J), kingianin H is reported to be the most active in the Bcl-xL inhibition assay. ^{1a} We considered therefore the synthesis of kingianin H from diol 6 which was in hand.

Conversion of diol 6 (previously converted to kingianin A) to kingianin H requires lengthening of the side chains. Short sequences that effect 3-carbon homologations are relatively rare. An attractive plan was the transition-metal-catalyzed conversion of primary iodides to 3-carbon homologated esters by the Ni(0)-catalyzed "formal conjugate addition" described by Manchand et al. 8,9 Accordingly, we prepared diiodide 27 and applied the chain-lengthening procedure, obtaining diester 28 in 70% yield. Hydrolysis then provided kingianin H (1H, Scheme 6).

Finally we turned to the synthesis of kingianin J (1J), the last of the naturally occurring pseudosymmetric dimers (Figure 1). Conversion of alcohol 19 to the corresponding diiodide was straightforward. However, when we applied the Manchand protocol or Cheng's Co(I)-mediated procedure 9a to this substrate, we obtained a mixture of products; the NMR

Scheme 6. Synthesis of Kingianin H

spectrum of neither crude product exhibited the olefinic protons of the western substructure.

These results led us to use a conventional homologation. DIBAL reduction of dinitrile **25** with hydrolysis of the diimine intermediate gave the dialdehyde **29**. Then reduction, mesylation, malonic ester homologation, chloride-induced decarboxylation, and hydrolysis gave the diacid natural product kingianin J (Scheme 7).

CONCLUSION

In summary, the intermolecular RCDA procedure, applied to the individual prekingianin structures 8 and 17, gave key intermediates for kingianin synthesis. As expected, ¹⁰ the intermolecular RCDA reaction has a preference for an endo

Scheme 7. Synthesis of Kingianin J

transition state in the RCDA reaction but this is not overwhelming. In both cases, the addition of the (+)-enantiomer to the (-)-enantiomer gives an exo Diels—Alder adduct as a minor product. Like the intramolecular case examined previously, both intermolecular RCDA reactions (Schemes 1 and 4) demonstrated additional regio- and stereoselective effects consistent with the structures of the isolated natural products. Thus, the C-5,6 double bond (proximal to the exo substituent on the cyclobutane ring) acts as the dienophile. It is attacked from the less hindered face by the diene component which reacts from its less hindered face.

Three of the major RCDA products were elaborated to four additional members of the kingianin family. The total syntheses of kingianins D, F, H, and J entailed 10, 13, 9, and 17 steps, respectively, from commercially available materials. None of the schemes required preparative HPLC separation of intermediates or products. These short syntheses appear to be scalable.

EXPERIMENTAL SECTION

General Methods. All air- and moisture-sensitive reactions were performed under argon in oven-dried or flame-dried glassware. Unless stated otherwise, commercially available reagents were used as supplied or distilled by short-path distillation. HPLC-grade hexane, EtOAc, CH2Cl2, and CH3OH were used in chromatography. Tetrahydrofuran (THF) was distilled from sodium-benzophenone ketyl under argon. Dichloromethane was distilled from calcium hydride under nitrogen gas. All experiments were monitored by thin-layer chromatography (TLC) performed on Whatman precoated AL SIL G/UV 250 μ m layer aluminum-supported flexible plates. Spots were visualized by exposure to ultraviolet (UV) light (254 nm) or by staining with 10% solution of phosphomolybdenic acid (PMA) in ethanol or KMnO4 aq solution and then heating. Flash chromatography was carried out with Sorbent Technologies silica gel (porosity 60 Å, 230–400 mesh, surface area $500-600 \text{ m}^2/\text{g}$, bulk density 0.4 g/ mL, pH range 6.5-7.5).

Infrared spectra were recorded with a Fourier transform (FT-IR) instrument. Samples were scanned as neat liquids or dissolved in CH_2Cl_2 on sodium chloride (NaCl) salt plates. Frequencies are reported in reciprocal centimeters (cm $^{-1}$). Nuclear magnetic resonance (NMR) spectra were recorded at 400 or 500 MHz for 1 H and at 100 or 126 MHz for 13 C spectra. Chemical shifts for proton NMR spectra are reported in parts per million (ppm) relative to the singlet at 7.260 ppm for chloroform-d and to the singlets at 8.74, 7.58, 7.22 ppm for pyridine- d_5 . Chemical shifts for carbon NMR spectra are reported in ppm with the center line of the triplet for chloroform-d set at 77.000 ppm and the triplets for pyridine- d_5 set at 150.35, 135.91, 123.87 ppm. The COSY, NOESY, HMQC, and HMBC spectra were recorded with a 500 MHz spectrometer. High-resolution mass spectra were obtained on a Q-Tof spectrometer (ESI) and a 70-VSE spectrometer (EI).

Diols 6, 7, and 9 and Alcohol 10. To a stirred solution of the endo bicyclooctadienol 8 (100 mg, 0.37 mmol) in dry CH_2Cl_2 (2 mL) was added $SbCl_6 \cdot N(p\text{-BrPh})_3$ (15.1 mg, 0.019 mmol) at room temperature. The resulting deep blue solution was stirred for 1 h and quenched with wet NEt_3 . After concentration of the reaction mixture, the residue was subjected to preparative TLC (hexane/ $Et_2O/CH_2Cl_2/MeOH = 1:1:1:0.02$). Diols 6 (37 mg, 37%), 7 (10 mg, 10%), 9 (18 mg, 18%), and alcohol 10 (7 mg, 7%) were isolated.

Diol 9: R_f 0.5 (Hex/EtOAc = 1:1); ¹H NMR (400 MHz, CDCl₃) δ 1.68 (d, J = 8.9 Hz, 1 H), 1.81 (m, 1 H), 1.95 (m, 1 H), 2.15 (m, 1 H), 2.22–2.36 (m, 3 H), 2.41–2.69 (m, 9 H), 3.30–3.40 (m, 4 H), 5.61 (br d, J = 10.3 Hz, 1 H), 5.68 (ddd, J = 10.4, 3.7, and 1.9 Hz, 1 H), 5.90 (s, 4 H), 6.11 (t, J = 7.3 Hz, 1 H), 6.32 (t, J = 7.3 Hz, 1 H), 6.55–6.71 (m, 6 H);. ¹³C NMR (100 MHz, CDCl₃) δ 33.1, 35.5, 36.2, 37.2, 38.1, 39.2, 39.6, 40.2, 40.3, 40.6, 41.2, 41.4, 44.7, 48.2, 65.0, 67.0, 100.72, 100.74, 108.2, 108.81, 108.84, 120.98, 121.02, 124.8, 132.2, 133.1, 134.4, 135.0, 135.5, 145.5, 145.6, 147.57, 147.62.; IR (neat) ν_{max}

1039, 1246, 1441, 1448, 1502, 2915, 3373; HRMS[ES+] calcd for $C_{34}H_{36}O_6Na$ [M + Na]⁺ 563.2410, found 563.2417.

Alcohol 10: R_f 0.7 (Hex/EtOAc = 1:1); ¹H NMR (500 MHz, CDCl₃) δ 1.76 (m, 1 H), 1.93 (ddd, J = 16.7, 6.6, and 1.7 Hz, 1 H), 2.13 (m, 1 H), 2.24 (m, 1 H), 2.43 (dd, J = 14.2 and 9.7 Hz, 1 H), 2.50 (m, 1 H), 2.61 (dd, J = 17.7 and 9.7 Hz, 1 H), 2.71 (dd, J = 14.4 and 8.0 Hz, 1 H), 3.26 (m, 1 H), 3.72 (d, J = 7.0 Hz, 2 H), 5.67 (dt, J = 9.9 and 2.5 Hz, 1 H), 5.89 (s, 2 H), 5.97 (m, 1 H), 6.60 (s, 1 H), 6.69 (s, 1 H); ¹³C NMR (126 MHz, CDCl₃) δ 27.0, 31.6, 32.0, 32.6, 33.2, 37.1, 49.4, 66.9, 100.5, 108.3, 108.5, 128.5, 131.6, 131.7, 135.1, 145.5, 145.7; IR (neat) ν_{max} 1039, 1233, 1481, 1501, 2921, 3356 cm⁻¹; HRMS[EI+] calcd for $\text{C}_{17}\text{H}_{18}\text{O}_3$ [M]+ 270.1256, found 270.1249.

Dinitrile 12. Step 1. To a stirred solution of the diol 9 (18.0 mg, 33.3 μ mol) in CH₂Cl₂ (1 mL) were added triethylamine (27.9 μ L, 200 μ mol) and methanesulfonyl chloride (7.70 μ L, 99.8 μ mol) at 0 °C under Ar. After 30 min, the reaction mixture was diluted with diethyl ether (20 mL), and the resulting mixture was washed with water, 5% HCl, and satd NaHCO₃ solution. The organic solution was then dried over MgSO₄ and concentrated. The crude product was directly used for the next step.

Dimesylate 11: R_f 0.6 (Hex/EtOAc = 1:1); ¹H NMR (500 MHz, CDCl₃) δ 1.70 (d, J = 9.1 Hz, 1 H), 1.97 (m, 1 H), 2.04–2.60 (m, 15 H), 2.85 (s, 3 H), 2.87 (s, 3 H), 3.79–3.94 (m, 4 H), 5.60 (br d, J = 10.3 Hz, 1 H), 5.79 (ddd, J = 10.3, 3.8, and 1.9 Hz, 1 H), 5.9012 (s, 2 H), 5.9023 (s, 2 H), 6.11 (t, J = 7.3 Hz, 1 H), 6.34 (t, J = 7.3 Hz, 1 H), 6.53–6.70 (m, 6 H).

Step 2. To a stirred solution of the dimesylate 11 in DMF (1 mL) were added sodium iodide (2.5 mg, 17 μ mol) and sodium cyanide (13.0 mg, 270 μ mol) at rt. The solution was heated to 70 °C and stirred for 12 h. Then it was allowed to cool, diluted with ethyl acetate (20 mL), and washed with water (10 mL \times 3). The organic layer was washed with brine, dried over MgSO₄, and concentrated. The residue was purified by column chromatography (Hex/EtOAc = 4:1) to afford dinitrile 12 (15.4 mg, 83% for two steps, colorless liquid).

Dinitrile 12: R_f value 0.25 (Hex/EtOAc = 5:1); 1 H NMR (500 MHz, CDCl₃) δ 1.76 (d, J = 9.0 Hz, 1 H), 1.84 (m, 1 H), 1.95–2.07 (m, 5 H), 2.12–2.21 (m, 2 H), 2.31–2.39 (m, 3 H), 2.44 (dd, J = 14.0 and 8.5 Hz, 1 H), 2.50–2.69 (m, 7 H), 5.61 (br d, J = 10.3 Hz, 1 H), 5.79 (ddd, J = 10.3, 3.9, and 2.0 Hz, 1 H), 5.91 (s, 4 H), 6.12 (t, J = 7.3 Hz, 1 H), 6.36 (t, J = 7.3 Hz, 1 H), 6.52–6.71 (m, 6 H); 13 C NMR (500 MHz, CDCl₃) δ 20.7, 22.8, 33.6, 34.9, 35.5, 36.7, 38.0, 38.9, 39.6, 40.3, 40.90, 40.96, 41.04, 41.5, 42.4, 43.6, 100.78, 100.81, 108.3, 108.6, 108.7, 118.5, 119.0, 120.95, 120.99, 124.3, 132.1, 133.3, 133.8, 134.2, 134.4, 145.7, 145.8, 147.6, 147.7; IR (neat) $\nu_{\rm max}$ 1246, 1442, 1488, 1502, 2245, 2917 cm $^{-1}$; HRMS[ES+] calcd for $C_{36}H_{35}N_2O_4$ [M + H] $^+$ 559.2597, found 559.2609.

Kingianin D (1D). Step 1. To a stirred solution of dinitrile 12 (13.0 mg, 23.2 μ mol) in EtOH–THF (2.5 mL/0.5 mL) was added aq NaOH solution (0.05 mL, 7 M) and then, dropwise, H_2O_2 solution (0.6 mL, 35% in water) at 0 °C. The mixture was warmed to room temperature, stirred for 30 min, and stirred at reflux for an additional 4 h. The reaction mixture was cooled, diluted with brine, and extracted with CH₂Cl₂ (15 mL × 5). The combined organic solution was washed with brine, dried over Na₂SO₄, filtered, and concentrated. The residue was used for the next step.

Step 2. The residue from step 1 was placed in a 3 mL vial and flushed with Ar for 10 min. To the stirred clear solution of the crude product in CH₃CN (1.5 mL) were added acetaldehyde (7.7 μ L, 139 μ mol), triethylsilane (22.2 μ L, 139 μ mol), and trifluoroacetic acid (9.8 μ L, 128 μ mol) in that order. Then, the vial was capped and sealed with parafilm. After being stirred for 15 h, the reaction mixture was diluted with CH₂Cl₂ (30 mL), washed with satd NaHCO₃ solution and brine, dried over Na₂SO₄, and concentrated. The residue was subjected to preparative TLC (hexane/EtOAc = 1:2) to afford kingianin D (5.9 mg, 39%: white solid; mp = 86–91 °C, lit. mp not reported); R_f 0.2 (hexane/EtOAc = 1:2); for H NMR (500 MHz, CDCl₃) and 13 C NMR (126 MHz, CDCl₃), see Tables 1 and 2 in the Supporting Information; IR (neat) $\nu_{\rm max}$ 1040, 1246, 1442, 1488, 1503, 1555, 1639, 2924, 3287 cm⁻¹.

Exo Alcohol 15. To a stirred solution of iodo ether 14 (92.0 mg, 0.232 mmol) in THF (5 mL) was added MeLi (1.6 M in THF, 0.24 mL, 1.2 mmol) at 0 °C under Ar. After 10 min, the reaction was quenched with satd NH₄Cl solution, and the resulting mixture was extracted with diethyl ether (10 mL × 3). The combined organic solution was washed with satd Na₂S₂O₃ solution and brine, dried over MgSO₄, and concentrated. The residue was subjected to column chromatography (Hex/EtOAc = 5:1) to afford the exo alcohol 15 (66 mg, 86%) as a colorless oil; R_f value 0.3 (Hex/EtOAc = 4:1); ¹H NMR (500 MHz, CDCl₃) δ 2.55–2.75 (m, 5 H), 3.23 (m, 1 H), 3.57 (dd, J = 10.8 and 5.7 Hz, 1 H), 3.71 (dd, J = 10.8 and 8.4 Hz, 1 H), 5.44 (dd, J = 9.6 and 5.4 Hz, 1 H), 5.59 (dd, J = 9.8 and 3.8 Hz, 1 H), 5.62 (dd, J= 9.7 and 5.4 Hz, 1 H), 5.85 (ddd, J = 9.8, 5.5, and 1.6 Hz, 1 H), 5.92(s, 2 H), 6.61 (dd, J = 7.9 and 1.6 Hz, 1H), 6.65 (d, J = 1.6 Hz, 1 H), 6.72 (d, J = 7.9 Hz, 1 H); ¹³C NMR (126 MHz, CDCl₃) δ 32.5, 36.1, 41.6, 50.4, 51.7, 63.3, 100.8, 108.2, 109.1, 121.4, 121.5, 124.4, 125.3, 127.2, 134.3, 145.8, 147.6.; IR (neat) ν_{max} 1040, 1246, 1442, 1488, 1502, 2916, 3356 cm⁻¹; HRMS[ES+] calcd for C₁₇H₁₈O₃ [M + Na]⁺ 293.1154, found 293.1150.

Chloro Ether 16. To a stirred solution of alcohol 15 (7.0 mg, 25.9 μ mol) in CH₂Cl₂ (1.0 mL) was added SbCl₆·N(p-BrPh)₃ (1.1 mg, 1.3 μ mol) at room temperature. After 1 min, the reaction mixture became yellow in color. To ensure complete conversion, more catalyst (29.6 mg, 36.3 μ mol) was added in portions until a blue color was maintained. The deep blue solution was stirred for 1 h and quenched with wet NEt₃. After concentration of the reaction mixture, the residue was subjected to column chromatography (Hex/EtOAc = 20:1-10:1) to afford chloro ether 16 (3.1 mg, 39%, colorless oil): R_f 0.8 (Hex/ EtOAc = 5:1); ¹H NMR (400 MHz, CDCl₃) δ 1.91 (m, 1 H), 2.54 (m, 1 H), 2.62 (dt, J = 6.4 and 3.8 Hz, 1 H), 2.74 (d, J = 6.6 Hz, 2 H), 3.10 (m, 1 H), 3.53 (dd, J = 7.4 and 3.7 Hz, 1 H), 3.68 (d, J = 7.4 Hz, 1 H), 4.09 (dd, J = 4.8 and 1.7 Hz, 1 H), 4.62 (dd, J = 4.6 and 1.8 Hz, 1 H),5.62 (dd, J = 8.0 and 3.4 Hz, 1 H), 5.82 (m, 1 H), 5.92 (s, 2 H), 6.60(dd, J = 6.3 and 1.2 Hz, 1H), 6.63 (d, J = 1.2 Hz, 1 H), 6.72 (d, J = 6.3)Hz, 1 H); 13 C NMR (100 MHz, CDCl₃) δ 31.7, 32.9, 41.4, 41.8, 47.5, 50.3, 73.1, 78.9, 100.8, 108.2, 108.9, 121.4, 122.3, 131.9, 133.4, 145.9, 147.6.; IR (neat) $\nu_{\rm max}$ 1248, 1440, 1489, 1504, 2920 cm $^{-1}$; HRMS[EI +] calcd for $C_{17}H_{17}O_3Cl~[M]^+$ 304.0866, found 304.0869.

Acetate 17. To a stirred solution of exo alcohol 15 (114 mg, 0.422 mmol) and DMAP (10.3 mg, 0.0843 mmol) in CH₂Cl₂ (2 mL) was added acetic anhydride (59.7 μ L, 0.632 mmol) at room temperature. After 1 h, the reaction mixture was diluted with CH2Cl2 (10 mL), washed with satd NaHCO3 solution and brine, dried over MgSO4, and concentrated. The residue was subjected to column chromatography (Hex/EtOAc = 5:1) to afford the acetate 17 (117 mg, 89%) as a colorless oil: R_f 0.6 (Hex/EtOAc = 5:1); ¹H NMR (500 MHz, CDCl₃) δ 2.00 (s, 3 H), 2.56–2.80 (m, 5 H), 3.23 (m, 1 H), 4.04 (dd, J = 11.0and 6.4 Hz, 1 H), 4.13 (dd, J = 11.0 and 9.1 Hz, 1 H), 5.38 (dd, J = 9.6 and 5.4 Hz), 5.50 (dd, J = 9.9 and 3.7 Hz, 1 H), 5.61 (dd, J = 9.7 and 5.5 Hz, 1 H), 5.84 (ddd, I = 9.8, 5.5, and 1.6 Hz, 1 H), 5.92 (s, 2 H), 6.60 (dd, J = 7.9 and 1.6 Hz, 1H), 6.64 (d, J = 1.6 Hz), 6.71 (d, J = 7.9Hz, 1 H); 13 C NMR (126 MHz, CDCl₃) δ 21.0, 32.7, 36.2, 41.4, 47.7, 50.4, 64.7, 100.8, 108.1, 109.1, 121.4, 121.6, 124.6, 124.8, 126.8, 134.1, 145.8, 147.5, 171.0.; IR (neat) $\nu_{\rm max}$ 1239, 1364, 1442, 1489, 1502, 1738, 2917 cm⁻¹; HRMS[ES+] calcd for $C_{19}H_{20}O_4Na$ [M + Na]⁺ 335.1259, found 335.1253.

Diols 19, 21, and 23. Step 1. To a stirred solution of acetate 17 (115 mg, 0.369 mmol) in $\mathrm{CH_2Cl_2}$ (2 mL) was added $\mathrm{SbCl_6\cdot N}(p\mathrm{-BrPh})_3$ (9.0 mg, 0.011 mmol) at 0 °C. The resulting deep blue solution was stirred for 1 h and quenched with wet NEt₃. After concentration of the reaction mixture, the residue was subjected to column chromatography. The fractions containing mixtures of diacetates were combined and concentrated. The crude product mixture was directly used for the next step.

Step 2. To a stirred solution of the diacetates in dry THF (3 mL) was added lithium aluminum hydride (56 mg, 1.5 mmol) at 0 $^{\circ}$ C under Ar. After 1 h, the reaction mixture was quenched with water and with satd NaOH solution. After being stirred for 2 h, the mixture was extracted with diethyl ether (10 \times 5 mL). The combined organic solution was washed with brine, dried over MgSO₄, and concentrated.

The residue was subjected to preparative TLC (hexane/ $\rm Et_2O/CH_2Cl_2/MeOH=1:1:1:0.04$) to afford the diols **19** (52.9 mg, 46%, colorless oil), **21** (34.5 mg, 30%, white solid, mp = 179–181 $^{\circ}$ C), and **23** (13.8 mg, 12%, colorless oil).

Diol **19**: R_f 0.4 (hexane/Et₂O/CH₂Cl₂/MeOH = 1:1:1:0.04); $^1\mathrm{H}$ NMR (400 MHz, CDCl₃) δ 1.39 (d, J = 8.9 Hz, 1 H), 1.79 (m, 1 H), 1.87–1.94 (m, 2 H), 2.00 (m, 1 H), 2.12–2.28 (m, 4 H), 2.44–2.70 (m, 7 H), 3.24 (dd, J = 10.9 and 5.6 Hz, 1 H), 3.31 (dd, J = 10.6 and 7.3 Hz, 1 H), 3.40 (dd, J = 10.9 and 8.3 Hz, 1 H), 3.52 (dd, J = 10.6 and 8.2 Hz, 1 H), 5.56 (br d, J = 10.4 Hz, 1 H), 5.64 (br d, J = 10.4 Hz, 1 H), 5,92 (m, 4 H), 6.00 (t, J = 7.3 Hz, 1 H), 6.10 (t, J = 7.3 Hz, 1 H), 6.56–6.74 (m, 6 H); $^{13}\mathrm{C}$ NMR (100 MHz, CDCl₃) δ 31.4, 37.3, 38.0, 38.2, 40.8, 41.5117, 41.5410, 42.2, 42.5, 43.6, 44.1, 44.2, 44.7, 62.5, 63.0, 100.8, 108.1, 109.0, 109.2, 121.2, 121.4, 124.9, 131.9, 132.1, 134.5, 134.7, 134.8, 145.6, 145.7, 147.5, 147.5; IR (neat) ν_{max} 1040, 1243, 1441, 1488, 1502, 2919, 3354 cm $^{-1}$; HRMS[ES+] calcd for $\mathrm{C_{34}H_{37}O_6}$ [M + H] $^+$ 541.2590, found 541.2578.

Diol 21: R_f value: 0.55 (hexane/Et₂O/CH₂Cl₂/MeOH = 1:1:1:0.04); ¹H NMR (400 MHz, CDCl₃) δ 1.40 (d, J = 9.1 Hz, 1 H), 1.78 (m, 1 H), 1.86–1.93 (m, 2 H), 1.99 (m, 1 H), 2.13–2.27 (m, 3 H), 2.35–2.56 (m, 6 H), 2.63–2.68 (m, 2 H), 3.25 (dd, J = 10.9 and 5.6 Hz, 1 H), 3.34 (dd, J = 10.6 and 7.4 Hz, 1 H), 3.41 (dd, J = 10.9 and 8.3 Hz, 1 H), 3.55 (dd, J = 10.6 and 8.0 Hz, 1 H), 5.55 (br d, J = 10.3 Hz, 1 H), 5.67 (ddd, J = 10.3, 3.8, and 1.9 Hz, 1 H), 5,91 (d, J = 1.4 Hz, 2 H), 5.92 (d, J = 1.4 Hz, 2 H), 5.98 (t, J = 7.3 Hz, 1 H), 6.55–6.72 (m, 6 H); ¹³C NMR (100 MHz, CDCl₃) δ 31.7, 36.9, 38.3, 39.6, 40.0, 40.7, 41.2, 41.6, 42.16, 42.25, 42.3, 43.8, 44.4, 45.3, 62.7, 63.0, 100.7, 100.8, 108.1, 108.2, 108.9, 109.2, 121.2, 121.4, 124.5, 132.2, 132.9, 134.2, 134.4, 134.7, 145.6, 145.7, 147.5, 147.5; IR (neat) ν_{max} 1040, 1245, 1441, 1488, 1502, 2918, 3356 cm⁻¹; HRMS[ES+] calcd for C₃₄H₃₇O₆ [M + H]⁺ 541.2590, found 541.2582.

Diol 23: R_f 0.35 (hexane/Et₂O/CH₂Cl₂/MeOH = 1:1:1:0.04); ¹H NMR (500 MHz, CDCl₃) δ 1.29 (dd, J = 10.9 and 2.4 Hz, 1 H), 1.83 (m, 1 H), 1.89 (m, 1 H), 1.92 (m, 1 H), 2.10 (m, 1 H), 2.12 (m, 1 H), 2.14 (m, 1 H), 2.21 (dd, J = 9.6 and 8.0 Hz, 1 H), 2.24 (m, 1 H), 2.44 (m, 1 H), 2.47 (m, 1 H), 2.49 (m, 1 H), 2.60 (br td, J = 9.5 and 2.7 Hz, 1 H), 2.65 (br d, J = 6.5, 1 H), 2.68 (br d, J = 6.6 Hz, 1 H), 2.76 (br t, J = 6.9 Hz, 1 H), 3.28 (dd, J = 10.9 and 5.7 Hz, 1H), 3.32 (dd, J= 10.6 and 7.7 Hz, 1 H), 3.46 (dd, J = 10.9 and 8.8 Hz, 1 H), 3.50 (dd, J = 10.6 and 7.9 Hz, 1 H), 5.63 (br d, J = 10.4 Hz, 1 H), 5.81 (br d, J = 10.4 Hz, 1 H 10.4 Hz, 1 H), 5.91 (s, 2 H), 5.92 (s, 2 H), 6.24 (t, *J* = 7.3 Hz, 1 H), 6.41 (t, J = 7.3 Hz, 1 H), 6.55–6.72 (m, 6 H); ¹³C NMR (126 MHz, $CDCl_3$) δ 32.0, 32.9, 33.2, 33.7, 36.1, 37.6, 40.3, 40.5, 42.0, 42.4, 43.1, 44.2, 44.8, 45.6, 62.8, 62.9, 100.8, 108.1, 108.9, 109.2, 121.2, 121.5, 126.0, 131.5, 134.2, 134.8, 135.0, 135.5, 145.66, 145.72, 147.5, 147.6; IR (neat) ν_{max} 1040, 1244, 1441, 1488, 1502, 2917, 3351 cm⁻¹; HRMS[ES+] calcd for $C_{34}H_{37}O_6$ [M + H]⁺ 541.2590, found 541.2585.

Dinitrile 25. Step 1. To a stirred solution of the diol 19 (16.5 mg, 30.5 μ mol) in CH₂Cl₂ (0.5 mL) were added triethylamine (25.5 μ L, 183 μ mol) and methanesulfonyl chloride (7.1 μ L, 91.5 μ mol) at 0 °C under Ar. After 30 min, the reaction mixture was diluted with diethyl ether (20 mL), and the resulting mixture was washed with water, 5% HCl, and satd NaHCO₃ solution. The organic solution was then dried over MgSO₄ and concentrated. The crude product was directly used for the next step.

Dimesylate $\overline{\bf 24}$: R_f 0.7 (Hex/EtOAc = 1:1); 1 H NMR (400 MHz, CDCl₃) δ 1.35 (d, J = 9.1 Hz, 1 H), 1.77 (m, 1 H), 1.91 (m, 2H), 2.13–2.24 (m, 4 H), 2.43–2.67 (m, 8 H), 2.89 (s, 3 H), 2.90 (s, 3 H), 3.74 (dd, J = 9.8 and 5.6 Hz, 1 H), 3.80 (dd, J = 9.7 and 6.4 Hz, 1 H), 3.97 (t, J = 9.7 Hz, 1 H), 4.17 (t, J = 9.1 Hz, 1 H), 5.55 (br d, J = 10.4 Hz, 1 H), 5.67 (br d, J = 10.4 Hz, 1 H), 5,93 (m, 4 H), 6.04 (t, J = 7.2 Hz, 1 H), 6.14 (t, J = 7.2 Hz, 1 H), 6.54–6.74 (m, 6 H).

Step 2. To a stirred solution of the dimesylate 24 in DMF (1 mL) were added sodium iodide (2.3 mg, 15 μ mol) and sodium cyanide (12.0 mg, 244 μ mol). The resulting suspension was heated to 70 °C and stirred for 16 h. Then it was cooled, diluted with ethyl acetate (20 mL), and washed with water (10 mL \times 3). The organic layer was washed with brine, dried over MgSO₄, and concentrated. The residue

was purified by column chromatography (Hex/EtOAc = 4:1) to afford dinitrile 25 (12.6 mg, 74% in two steps, colorless liquid).

Dinitrile **25**: R_f 0.7 (Hex/EtOAc = 2:1); ¹H NMR (500 MHz, CDCl₃) δ 1.36 (d, J = 9.1 Hz, 1 H), 1.75 (m, 1 H), 1.82–1.99 (m, 4 H), 2.04–2.22 (m, 5 H), 2.29–2.42 (m, 2 H), 2.52–2.71 (m, 7 H), 5.55 (br d, J = 10.3 Hz, 1 H), 5.72 (ddd, J = 10.3, 3.4, and 2.1 Hz, 1 H), 5.94 (m, 4 H), 6.07 (t, J = 7.2 Hz, 1 H), 6.36 (t, J = 7.2 Hz, 1 H), 6.55–6.74 (m, 6 H); ¹³C NMR (500 MHz, CDCl₃) δ 16.9, 17.8, 31.9, 37.5, 37.6, 37.8, 37.9, 38.0, 39.9, 41.2, 41.3, 42.5, 43.6, 43.9, 47.1, 100.8, 100.9, 108.20, 108.24, 108.8, 109.1, 119.0, 119.4, 121.2, 121.5, 123.5, 133.0, 133.3, 133.5, 133.7, 134.0, 145.8, 145.9, 147.58, 147.65; IR (neat) ν_{max} 1039, 1240, 1441, 1488, 1502, 2242, 2920; HRMS[ES+] calcd for $C_{36}H_{35}N_2O_4$ [M + H]⁺ 559.2597, found 559.2591 cm⁻¹.

Kingianin F (1F). Step 1. To a stirred solution of dinitrile **25** (14.1 mg, 25.2 μ mol) in EtOH–THF (2.5 mL–0.5 mL) was added aq NaOH solution (0.05 mL, 7 M) and then, dropwise, H_2O_2 solution (0.6 mL, 35% in water) at 0 °C. The mixture was warmed to room temperature, stirred for 30 min, and heated to reflux. After 3 h, the same amounts of NaOH and H_2O_2 solutions were added to the mixture. After being stirred for an additional 3 h, the reaction mixture was diluted with brine and then extracted with CH₂Cl₂ (15 mL × 5). The combined organic solution was washed with brine, dried over Na₂SO₄, filtered, and concentrated. The residue was used for the next step.

Step 2. The residue from step 1 was placed in a 3 mL vial, and the vial was flushed with Ar for 10 min. Addition of CH₃CN (1.5 mL) gave a clear solution which was stirred and to which acetaldehyde (8.4 μ L, 151 μ mol), triethylsilane (24.3 μ L, 151 μ mol), and trifluoroacetic acid (10.6 μ L, 139 μ mol) were added in that order. Then, the vial was capped and sealed with parafilm. After being stirred for 15 h, the reaction mixture was diluted with CH₂Cl₂ (30 mL). The resulting solution waswashed with satd NaHCO₃ solution and brine, dried over Na₂SO₄, and concentrated. The residue was subjected to preparative TLC (hexane/EtOAc = 1:2) to afford kingianin F (6.2 mg, 38%, white solid, mp =86–91 °C, lit. ^{1a} 90–95 °C): R_f 0.2 (hexane/EtOAc = 1:2); for ¹H NMR (500 MHz, pyridine- d_5) and ¹³C NMR (126 MHz, pyridine- d_5), see Tables 3 and 4 in the Supporting Information; IR (neat) $\nu_{\rm max}$ 1039, 1244, 1441, 1488, 1502, 1548, 1641, 2922, 3292 cm⁻¹

Diiodide 27. To a stirred solution of triphenylphosphine (58 mg, 0.22 mmol) and imidazole (25 mg, 0.37 mmol) in CH_2Cl_2 (1.5 mL) was added iodine (55.8 mg, 0.22 mmol) at 0 °C under Ar. The mixture was stirred for 20 min and treated dropwise with a solution of the diol 6 (20 mg, 0.037 mmol) in CH₂Cl₂ (0.5 mL). The resulting mixture was allowed to warm to room temperature over 1 h, and then the suspension was filtered. The filtrate was diluted with ethyl ether (10 mL) and washed twice with satd Na₂S₂O₃ solution. The combined aqueous solution was extracted with CH_2Cl_2 (5 mL × 3). The combined organic solution was washed with brine, dried over MgSO₄, and concentrated. The residue was subjected to column chromatography (Hex/EtOAc = 20:1) to afford the diiodide 27 (21.7 mg, 77%) as a colorless oil: R_f 0.5 (Hex/EtOAc = 10:1); ¹H NMR (500 MHz, CDCl₃) δ 1.83–1.92 (m, 2 H), 1.99 (d, J = 8.9 Hz, 1 H), 2.07–2.27 (m, 5 H), 2.49 (m, 2 H), 2.56–2.67 (m, 6 H), 2.93–3.03 (m, 4 H), 5.59 (br d, J = 10.4 Hz, 1 H), 5.68 (ddd, J = 10.4, 3.1, and 2.0 Hz, 1 H), 5.91 (s, 2 H), 5.92 (s, 2 H), 6.11 (t, J = 7.3 Hz, 1 H), 6.23 (t, J = 7.3 Hz, 1 H), 6.24 (t, J = 7.3 Hz, 1 H), 6.25 (t, 7.3 Hz, 1 H), 6.56–6.72 (m, 6 H); 13 C NMR (126 MHz, CDCl₃) δ 11.6, 13.5, 32.1, 34.8, 35.5, 37.58, 37.61, 38.1, 38.2, 42.2, 43.5, 44.6, 45.2, 45.3, 45.8, 46.8, 100.7, 108.1, 108.2, 108.7, 108.8, 120.96, 120.97, 125.1, 132.1, 132.3, 134.4, 134.82, 134.84, 145.5, 145.6, 147.5; IR (neat) ν_{max} 938, 1039, 1247, 1442, 1488, 1501, 2919 cm⁻¹.

Diester 28. The procedure of Manchand et al. was adapted. ^{8a} A mixture of NiCl₂·6H₂O (32.8 mg, 138 μ mol), Zn (45.1 mg, 690 μ mol), and methyl acrylate (57.5 μ L, 634 μ mol) in pyridine (0.5 mL) was stirred at 60 °C for 30 min under Ar. The resulting reddish brown heterogeneous suspension was cooled to room temperature and treated with a solution of diiodide 27 (21.0 mg, 27.6 μ mol) in pyridine (0.5 mL). After 4 h, the reaction mixture was filtered through a pad of Celite, and the Celite was washed through with EtOAc. The filtrate was diluted with EtOAc (15 mL), and this solution was washed with

5% HCl (10 mL × 2), satd NaHCO₃ solution, and brine, dried over MgSO₄, and concentrated. The residue was subjected to column chromatography (Hex/EtOAc = 5:1) to afford diester **28** (13.1 mg, 70%) as a colorless oil: R_f 0.5 (Hex/EtOAc = 1:2); 1 H NMR (MHz, CDCl₃) δ 1.12–1.71 (m, 11 H), 1.79 (m, 1 H), 2.00 (m, 1 H), 2.11 (m, 1 H), 2.16–2.25 (m, 6 H), 2.33 (m, 1 H), 2.45–2.66 (m, 7 H), 3.65 (s, 3 H), 3.66 (m, 3 H), 5.56 (br d, J = 10.4 Hz, 1 H), 5.64 (ddd, J = 10.4, 3.0, and 2.0 Hz, 1 H), 5.89 (s, 2 H), 5.91 (s, 2 H), 6.06 (t, J = 7.3 Hz, 1 H), 6.20 (t, J = 7.3 Hz, 1 H), 6.55–6.70 (m, 6 H); 13 C NMR (126 MHz, CDCl₃) δ 22.7, 23.2, 32.6, 34.1, 34.5, 34.7, 35.5, 36.15, 36.24, 38.2, 38.5, 39.1, 39.3, 41.7, 42.6, 43.35, 43.42, 43.9, 44.4, 45.1, 51.40, 51.43, 100.6, 108.0, 108.76, 108.82, 120.9, 121.0, 125.4, 132.0, 132.2, 134.8, 135.4, 135.8, 145.30, 145.31, 147.40, 147.44, 174.1, 174.2; IR (neat) ν_{max} 1246, 1440, 1488, 1503, 1737, 2914 cm⁻¹; HRMS[ES+] calcd for C₄₂H₄₉O₈ [M + H]⁺ 681.3427, found 681.3425.

Kingianin H (1H). To a stirred solution of diester **28** (12.5 mg, 18.3 μmol) in EtOH–H₂O (2 mL/0.2 mL) was added NaOH (7.30 mg, 180 μmol) at room temperature. The mixture was stirred overnight and concentrated. The residue was dissolved in water, and this solution was acidified with 1 N aq HCl. The resulting mixture was extracted with CH₂Cl₂ (20 mL × 3), and the combined organic solution was washed with water and brine, dried over MgSO₄, and concentrated to afford kingianin H (11.2 mg, 93%, white solid, mp = 59–63 °C, lit. mp not reported): R_f 0.5 (Hex/EtOAc = 1:1); 1 H NMR (400 MHz, CDCl₃) and 13 C NMR (100 MHz, CDCl₃) δ see Tables 5 and 6 in the Supporting Information; IR (neat) ν_{max} 924, 1039, 1186, 1245, 1442, 1488, 1503, 1704, 2913 cm⁻¹.

Diol 30. Step 1. To a stirred solution of the dinitrile **25** (17.8 mg, 31.9 μ mol) in CH₂Cl₂ (1.5 mL) was added dropwise DIBAL (1.0 M in hexane, 70.0 μ L, 70.0 μ mol) at -78 °C. The mixture was stirred for 4 h at the same temperature, quenched with satd NH₄Cl solution, and treated with 10% potassium sodium tartrate. The resulting mixture was stirred for 1 h and extracted with CH₂Cl₂ (5 mL × 5). The organic solution was dried over MgSO₄, concentrated, and directly used for the next step.

Step 2. To a stirred solution the dialdehyde 29 in MeOH (1.0 mL) was slowly added NaBH₄ (3.6 mg, 95.6 μ mol) at 0 °C. The mixture was stirred for 30 min, quenched with satd NH₄Cl solution, and extracted with ethyl acetate (5 mL × 3). The combined organic solution was dried over MgSO₄ and concentrated. The residue was subjected to silica gel column chromatography (Hex/ EtOAc = 2:1) to afford the diol 30 (9.9 mg, 55%) as a colorless oil: R_f 0.6 (Hex/EtOAc = 1:1); ¹H NMR (500 MHz, CDCl₃) δ 1.30 (m, 1 H), 1.42 (m, 1 H), 1.49-1.62 (m, 3 H), 1.72 (m, 1 H), 1.80-1.87 (m, 3 H), 2.04-2.12 (m, 4 H), 2.7 (m, 2 H), 2.50 (m, 1 H), 2.56 (m, 4 H), 3.33 (m, 2 H), 3.47 (m, 2 H), 5.53 (br d, J = 10.4 Hz, 1 H), 5.62 (br d, J = 10.4 Hz, 1 H), 5.92 (s, 2 H), 5.94 (s, 2 H), 5.97 (t, J = 6.8 Hz, 1 H), 6.11 (t, J = 6.8 Hz, 1 H), 6.55–6.74 (m, 6 H); 13 C NMR (126 MHz, CDCl₃) δ 32.3, 32.9, 33.4, 38.0, 38.2, 38.6, 38.9, 39.0, 41.0, 42.0, 42.6, 42.7, 43.8, 44.3, 47.2, 61.8, 61.9, 100.7, 108.0, 109.0, 109.3, 121.2, 121.5, 125.3, 131.99, 132.03, 134.6, 134.8, 135.1, 145.5, 145.6, 147.4; IR (neat) $\nu_{\rm max}$ 1040, 1243, 1441, 1488, 1502, 2917, 3347 cm⁻¹; HRMS[ES+] calcd for $C_{36}H_{41}O_6 [M + H]^+$ 569.2903, found 569.2911.

Dimalonate 31. Step 1. To a stirred solution of the diol **30** (6.1 mg, 10.7 μ mol) in CH₂Cl₂ (1.0 mL) were added triethylamine (9.0 μ L, 64 μ mol) and methanesulfonyl chloride (2.5 μ L, 32 μ mol) at 0 °C under Ar. After 30 min, the reaction mixture was diluted with diethyl ether (10 mL), and the resulting mixture was washed with water, 5% HCl, and satd NaHCO₃ solution. The organic solution was then dried over MgSO₄ and concentrated. The crude product was directly used for the next step.

Step 2. To a stirred solution of NaH (60% dispersion in oil, 7.70 mg, 193 $\mu \rm mol)$ in THF (3.0 mL)–DMF (0.3 mL) was added diethyl malonate (32.5 $\mu \rm L$, 214 $\mu \rm mol)$ at rt. After 30 min, the mixture was treated with mesylate (from the above procedure) and NaI (0.8 mg, 5.4 $\mu \rm mol)$ in THF (0.2 mL). The reaction mixture was then heated to reflux and stirred for 18 h. The resulting mixture was cooled to rt, quenched with satd NH₄Cl solution, and extracted with diethyl ether (10 mL \times 3). The combined organic solution was dried over MgSO₄, concentrated, and subjected to silica gel column chromatography

(Hex/EtOAc = 5:1) to afford the dimalonate 31 (4.7 mg, 51%) as a colorless oil: R_f 0.5 (Hex/EtOAc = 5:1); 1 H NMR (500 MHz, CDCl₃) δ 1.24 (m, 17 H), 1.54 (m, 1 H), 1.61–1.83 (m, 7 H), 1.95–1.2.08 (m, 4 H), 2.36 (m, 2 H), 2.52 (m, 5 H), 3.18 (m, 2 H), 4.17 (m, 8 H), 5.50 (br d, J = 10.4 Hz, 1 H), 5.59 (br d, J = 10.4 Hz, 1 H), 5.91–5.94 (m, 5 H), 6.03 (t, J = 7.2 Hz, 1 H), 6.52–6.73 (m, 6 H); 13 C NMR (126 MHz, CDCl₃) δ 14.06, 14.08, 27.2, 27.4, 27.5, 28.0, 32.1, 38.05, 38.08, 38.3, 38.9, 40.9, 41.7, 42.0, 42.2, 42.5, 42.7, 43.6, 44.0, 47.2, 52.1, 52.2, 61.2, 100.7, 108.0, 109.0, 109.2, 121.2, 121.5, 124.9, 131.9, 132.1, 134.6, 134.8, 135.1, 145.45, 145.52, 147.4, 169.4, 169.5, 169.5; IR (neat) $\nu_{\rm max}$ 1036, 1146, 1324, 1375, 1463, 1742, 2922 cm $^{-1}$; HRMS[ES+] calcd for $C_{50}H_{61}O_{12}$ [M + H] $^+$ 853.4163, found 853.4150

Diester 32. To a stirred solution of the dimalonate 31 (10.0 mg, 11.7 umol) in wet DMSO (1.0 mL) was added LiCl (4.9 mg, 117.0 μ mol) at room temperature. The resulting suspension was heated to 150 °C and stirred for 4 h. Then, the reaction mixture was diluted with 2 N HCl solution and extracted with diethyl ether (10 mL × 3). The combined organic solution was washed with water and brine, dried over MgSO₄, and concentrated. Silica gel column chromatography (Hex/EtOAc = 5:1) afforded the diester 32 (3.0 mg, 36%) as a colorless oil: R_f 0.7 (Hex/EtOAc = 5:1); ¹H NMR (500 MHz, CDCl₃) δ 1.19–1.50 (m, 15 H), 1.61–1.72 (m, 2 H), 1.76–1.84 (m, 2 H), 1.93-2.02 (m, 3 H), 2.08 (m, 1 H), 2.17-2.22 (m, 4 H), 2.32-2.37 (m, 2 H), 2.49-2.60 (m, 5 H), 4.097 (q, J = 7.2 Hz, 2 H), 4.103 (q, J = 7.2 Hz, 2 H)7.1 Hz, 2 H), 5.50 (d, I = 10.5 Hz, 1 H), 5.59 (d, I = 10.5 Hz, 1 H), 5.91-5.94 (m, 5 H), 6.06 (t, J = 6.9 Hz, 1 H), 6.53-6.60 (m, 4 H), 6.69–6.74 (m, 2 H); 13 C NMR (126 MHz, CDCl₃) δ 14.2, 14.3, 23.5, 23.8, 29.2, 29.7, 32.3, 34.5, 34.6, 38.1, 38.2, 38.4, 39.0, 41.0, 41.7, 42.1, 42.3, 42.6, 42.7, 43.7, 44.0, 47.3, 60.2, 100.7, 108.0, 109.0, 109.3, 121.3, 121.5, 125.2, 129.7, 131.9, 132.0, 134.8, 134.77, 134.83, 135.2, 145.4, 145.5, 147.4, 173.7, 173.8; IR (neat) $\nu_{\rm max}$ 1039, 1246, 1371, 1442, 1488, 1503, 1731, 2923 cm⁻¹; HRMS[ES+] calcd for C₄₄H₅₃O₈ [M + H]+ 709.3740, found 709.3727.

Kingianin J (1J). To a stirred solution of diester **32** (3.0 mg, 4.2 μ mol) in EtOH–H₂O (2 mL/0.2 mL) was added NaOH (3.0 mg, 74.0 μ mol) at room temperature. The mixture was stirred overnight and concentrated. The residue was dissolved in water and acidified with 1 N aq HCl solution. The resulting mixture was extracted with ethyl acetate (20 mL × 3). The combined organic solution was then washed with water and brine, dried over MgSO₄, and concentrated to afford kingianin J (2.3 mg, 84%, colorless oil): R_f 0.4 (Hex/EtOAc = 2:1); ¹H NMR (500 MHz, CDCl₃) δ and ¹³C NMR (126 MHz, CDCl₃) δ see Tables 7 and 8 in the Supporting Information; IR (neat) $\nu_{\rm max}$ 1040, 1097, 1243, 1442, 1488, 1503, 1707, 2922 cm⁻¹.

ASSOCIATED CONTENT

S Supporting Information

Comparison of NMR data for natural and synthetic kingianins, tabulated crosspeaks for COSY, NOESY, HMQC, and HMBC spectra of diol 23, summary of assigned ¹H and ¹³C signals for the pentacyclic core of diol 23. ¹H and ¹³C spectra for synthetic kingianins D, F, H, and J and for all stable, isolated intermediates, COSY, NOESY, HMQC, and HMBC spectra of diol 23, X-ray crystallographic data for compound 21. This material is available free of charge via the Internet at http://pubs.acs.org.

AUTHOR INFORMATION

Corresponding Author

*E-mail: kparker@notes.cc.sunysb.edu.

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

We are grateful to the National Institutes of Health (GM 74776) and to the Targeted Research Opportunity (TRO)

Program of the Carol M. Baldwin Breast Cancer Fund (Stony Brook University) for financial support of this work. In addition, we thank Te-Jung Hsu, Bo Liu, Daniel Resch, and Professor Joseph Lauher (Stony Brook University) for the X-ray crystallographic structure determination, Francis Picart (Stony Brook University) for expert assistance with NMR studies, and Yeongnam Choi for assistance with the graphics.

REFERENCES

- (1) (a) Leverrier, A.; Awang, K.; Gueritte, F.; Litaudon, M. *Phytochemistry* **2011**, *72*, 1443–1452. (b) Leverrier, A.; Dau, M. E. T. H.; Retailleau, P.; Awang, K.; Gueritte, F.; Litaudon, M. *Org. Lett.* **2010**, *12*, 3638–3641.
- (2) Bandaranayake, W. M.; Banfield, J. E.; Black, D.; St, C. J. Chem. Soc., Chem. Commun. 1980, 19, 902–903.
- (3) However, the authors did see interconversion of monomers 2 and 3; see: Sharma, P.; Ritson, D. J.; Burnley, J.; Moses, J. E. Chem. Commun. 2011, 47, 10605–10607.
- (4) Bellville, D. J.; Wirth, D. W.; Bauld, N. L. J. Am. Chem. Soc. 1981, 103, 718-720.
- (5) Lim, H. N.; Parker, K. A. Org. Lett. 2013, 15, 398-401.
- (6) During the preparation of this manuscript, the synthesis of kingianins A, D, and F by a sequence that used the intermolecular RCDA reaction appeared. This work focused primarily on testing the biomimetic premise and it relies on preparative HPLC for the isolation of the individual kingianins. Yields for the recovered kingianins from the HPLC experiment were not reported. See: Drew, S. L.; Lawrence, A. L.; Sherburn, M. S. Angew. Chem., Int. Ed. 2013, 52, 4221–4224.
- (7) The number of possible regio- and stereoisomers from an unsymmetrical bicyclooctadiene such as 2 is limited by the preference for an endo transition state and steric factors; see ref 5 for a discussion.
- (8) (a) Manchand, P. S.; Yiannikouros, G. P.; Belica, P. S.; Madan, P. J. Org. Chem. 1995, 60, 6574–81. (b) Van Arnum, S. D.; Moffet, H.; Carpenter, B. K. Org. Process Res. Dev. 2004, 8, 769–776.
- (9) (a) For a related reaction, see: Shukla, P.; Hsu, Y.-C.; Cheng, C.-H. J. Org. Chem. 2006, 71, 655–658. (b) For related transformations and a discussion of mechanism, see: Shrestha, R.; Dorn, S. C. M.; Weix, D. J. J. Am. Chem. Soc. 2013, 135, 751–762. Shrestha, R.; Weix, D. J. Org. Lett. 2011, 13, 2766–2769.
- (10) Bellville, D. J.; Bauld, N. L. J. Am. Chem. Soc. 1982, 104, 2665–2667.